<ul class="dashed" data-apple-notes-indent-amount="0"><li><span style="font-family: '.PingFangUITextSC-Regular'">文章标题:</span>Enhance-A-Video: Better Generated Video for Free</li><li><span style="font-family: '.PingFangSC-Regular'">文章地址:</span><a href="https://arxiv.org/abs/2502.07508">https://arxiv.org/abs/2502.07508</a> </li><li>arxiv</li></ul> <a href="../../../../files/Accounts/C037F400-EC11-4FAB-ACA5-467EE47E1BD1/Media/D76FAE35-C048-4F77-99B7-4AE6BD6AD47F/1_69546725-4DCF-4E0F-BEDA-6491CABBC9C6/Pasted%20Graphic%205.png" class="attr" data-apple-notes-zidentifier="40922C17-72BC-467E-8BF9-85E2DD6A14BA"></a> 这篇文章中,作者发现在时域的self-attention map中,对角线的权重比其他区域要大,因此作者就提出,在某层的前向过程中,利用attention map评估帧间的权重占比,通过该占比,调整该层的输出与残差的比例(作者通过实验发现某层的输出和残差的比例中,残差占大部分),增加帧间权重大的层的输出比重(通过温度系数调节)。1 <a href="../../../../files/Accounts/C037F400-EC11-4FAB-ACA5-467EE47E1BD1/Media/7A918E58-7822-48CF-89E8-773DB1B9CCD1/1_560F839A-F790-4225-B233-0C1AA6BBD7A3/Pasted%20Graphic%206.png" class="attr" data-apple-notes-zidentifier="34D1F3FF-B66E-448B-8C1E-C16142BE3E30"></a> <ul class="dashed" data-apple-notes-indent-amount="0"><li>数据:无需训练</li><li>指标:VBench;User Study</li><li>硬件:未提及</li><li>开源:<a href="https://github.com/NUS-HPC-AI-Lab/Enhance-A-Video">https://github.com/NUS-HPC-AI-Lab/Enhance-A-Video</a> </li></ul>